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A microwave-assisted, sequential, one-pot protocol has been developed for the synthesis of a variety of
benzothiadiazin-3-one-1,1-dioxides. This protocol utilizes a copper-catalyzed N-arylation of a-bromo-
benzenesulfonamides with a number of amines to generate the corresponding 2-aminobenzenesulfona-
mides, which undergo cyclization to the desired sultams using carbonyl diimidazole (CDI). A range of
conditions was evaluated for the key C–N bond formation step with tolerance toward functionalized
amines.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of protocols for the synthesis of skeletally di-
verse heterocyclic scaffolds is a critical step in the drug discovery
process. The growing demand for libraries of small molecules as
potential small molecule therapeutic agents for high-throughput
screening presents challenging opportunities in this field. One-
pot strategies are highly efficient pathways to rapidly synthesize
complex heterocyclic molecules from simple substrates.1 When
coupled with transition metal-catalyzed processes, one-pot pro-
cesses enable the generation of complex heterocyclic scaffolds
from simple building blocks. In this regard, a-haloarylsulfona-
mides represent an attractive building block for the production
of benzofused sultams.2,3

Sultams and their sulfonamide precursors possess a number of
advantageous chemical properties making them ideal building
blocks for the titled process, the most prominent of these include:
(i) click coupling between starting a-halobenzenesulfonyl chlo-
rides and amines under mild conditions, (ii) the a-halo group can
be utilized in transition metal-catalyzed cross coupling (iii) the
a-halo group enhances the acidity of the aryl sulfonamide N–H en-
abling Mitsunobu and conventional alkylation reactions to occur
under mild conditions, and (iv) the commercial availability of a
variety of substituted a-halo benzenesulfonyl chlorides. Taken col-
lectively, these attributes have guided our efforts to develop a
microwave-assisted, sequential one-pot protocol for the synthesis
of benzothiazdiazin-3-one-1,1-dioxides based on a pivotal cop-
per-catalyzed N-arylation strategy.
ll rights reserved.
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Traditionally, sultams have been synthesized using a number of
classical cyclization protocols such as Friedel–Crafts, [3+2] cyc-
loadditions, Diels–Alder reactions, and recently the application of
oxa- and aza-Michael reactions.4 Notably, there have been a num-
ber of transition metal-catalyzed protocols reported for the gener-
ation of diverse sultams.3,5

In addition to their inherent chemical properties, sultams have
emerged as important targets for drug discovery due to their po-
tent biological activities. In particular, benzothiadiazin-3-one-1,1-
dioxides and their derivatives have shown promising activity,
including hypoglycemic,6 anti-HIV,7 RSV inhibitory activity,8 as
well asand serving as selective antagonists of CXR2 (Fig. 1).9
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Figure 1. Biologically active benzofuzed sultams.



Table 2
Catalytic N-arylation of a-bromobenzene sulfonamides16

Entrya R1 R2 R3 R4–NH2 Yield (%)

1 H H Bn 4-MeOBnNH2 90
2 H H Bn 4-ClBnNH2 89
3 H H Bn Octylamine 94
4 H H Bn Phenethylamine 91
5 H H Bn Allylamine 96
6 H H 4-MeOBn Cyclopentylamine 90
7 H H Cp 4-MeOBnNH2 96
8 H F Allyl Allyl NH2 94
9 H F n-Butyl BnNH2 92

10 CF3 H Allyl n-Butyl amine 95
11 CF3 H (CH2)2Bn Propargyl amine 69
12 H F Allyl EtC(O)NH2 80

a Reaction conditions: sulfonamide (0.17 mmol), amine (0.2 mmol), CuI
(0.017 mmol), 1,10-phenanthroline (0.034 mmol), Cs2CO3 (0.34 mmol) in dry DMSO
(0.5 M) in microwave for 11 min at 150 �C.
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2. Results and discussion

Since the observation of copper-catalyzed coupling of a arylbr-
omide with an acetanilide by Goldberg in 1907,10 copper-catalyzed
N-arylation represents an effective reaction for the formation of C–
N and C–O bonds.11 Early reports classically required harsh reac-
tion conditions and stoichiometric quantities of copper. Seminal
work by Buchwald, Hartwig and Ley reported notable advances
in both ligands and reduced reaction temperatures for copper-cat-
alyzed couplings.12

Traditionally, benzothiadiazin-3-one-1,1-dioxides have been
synthesized in a number of linear protocols.6–9,13 Envisioning a
copper-catalyzed approach to benzothiadiazin-3-one-1,1-dioxides,
a variety of conditions were evaluated to probe and subsequently
optimize the N-arylation of allyl amine with N-allyl-2-bromo-4-
fluorobenzenesulfonamide 1 to yield N-allyl-2-(allylamino)-4-flu-
orobenzenesulfonamide 2 (Scheme 1, Table 1).14 An array of cop-
per sources (Table 1, entries 1–3) and ligands (Table 1, entries 4–
7) were initially evaluated followed by a survey of reaction solvent.
Under conventional heating, the desired sulfonamide 2, could be
isolated in 92% yield after 6 h.

Further optimization was achieved using microwave irradia-
tion, which reduced reaction times to 11 min at 150 �C with com-
parable yields (Table 1, entry 8 vs 11).15 With these results in hand,
a number of 2-aminobenzenesulfonamide derivatives were syn-
thesized to demonstrate the versatility of the protocol with a vari-
ety of amines, amides, and sulfonamide starting materials (Scheme
2, Table 2).
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Table 1
Screening conditions for reaction optimization

Entrya,d [Cu] cat. Ligand Solvent Yield (%)

1 CuI L-Proline DMSO 65

2 CuBr L-Proline DMSO 55

3 Cu2O L-Proline DMSO 10

4 CuI (CH2OH)2 DMSO 78
5 CuI 1,10-Phenanthroline DMSO 94
6 CuI DBU DMSO 50
7 CuI (CH2NHMe)2 DMSO 72
8 CuI 1,10-Phenanthroline DMF 92
9 CuI 1,10-Phenanthroline Dioxane 84

10 CuI 1,10-Phenanthroline DMF 96b

11 CuI 1,10-Phenanthroline DMF 94c

a Reaction conditions: 1 (0.17 mmol), allylamine (0.2 mmol), CuX (0.017 mmol),
ligand (0.034 mmol), Cs2CO3 (0.34 mmol) in solvent (0.5 M) at 100 �C for 6 h.

b Microwave irradiation for 22 min at 140 �C.
c Microwave irradiation for 11 min at 150 �C.
d Other bases were also investigated (DBU, K2CO3, Et3N) but Cs2CO3 was

preferred.
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Scheme 2.
With an array of 2-aminobenzenesulonfamides in hand, cycliza-
tion to the corresponding benzothiadiazin-3-one-1,1-dioxides
with carbonyl diimidazole (CDI) was achieved in excellent yields
under thermal conditions (Scheme 3, Table 3).13b,17

Finally with both protocols in hand, a sequential, two-step, one-
pot approach was achieved whereby microwave irradiation affor-
ded the desired benzothiadiazin-3-one-1,1-dioxides in good yield
(Scheme 4).18 To achieve this, the CDI cyclization was conducted
under microwave irradiation following the initial copper-catalyzed
step in the same microwave vial. This required a change of solvent
to DMF which was the optimum compatible solvent for both the N-
arylation and CDI cyclization steps while maintaining good yields.
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Scheme 3. CDI cyclization to benzothiadiazin-3-one-1,1-dioxides.
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Scheme 4. Sequential one-pot synthesis of benzothiadiazin-3-one-1,1-dioxides.

Table 3

Entrya R1 R2 R3 R4–NH2 Yield (%)

1 H H Bn 4-MeOBnNH2 96
2 H H Bn Octylamine 96
3 H F Allyl Allylamine 98
4 H H Bn Phenethylamine 94
5 CF3 H Allyl n-Butylamine 97
6 H H 4-MeOBn Cyclopentylamine 92
7 H H Cp 4-MeOBnNH2 93
8 H F n-Butyl BnNH2 97

a Reaction conditions: sulfonamide (0.17 mmol), CDI (0.69 mmol), Et3N
(0.34 mmol) in dry DMF (0.2 M) at 100 �C for 6 h.
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In conclusion, we have developed a microwave-assisted, cop-
per-catalyzed, sequential, one-pot synthesis of benzothiadiazin-
3-one-1,1-dioxides. A variety of derivatives of benzothiadiazin-3-
one-1,1-dioxides can be rapidly accessed by combining a copper-
mediated N-arylation followed by cyclization with CDI. Further ef-
forts toward employment of this method in library production will
be published in due course.
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